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An experimental study of geometrical effects on 
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This paper describes an experimental investigation of the shielding effects of various 
disks placed coaxially upstream of an axisymmetric, flat-faced cylinder. Remarkable 
decrease of the drag of such a system was observed for certain combinations of the 
basic geometric parameters, namely the diameter and gap ratios. For such optimum 
shielding the stream surface which separates from the disk reattaches smoothly onto 
the front edge of the cylinder, in what is close to a ‘ free-streamline’ flow; alternatively, 
the flow may be viewed as a cavity flow. For the optimum as well as other geometries, 
flow pictures, pressure distributions and some LDV measurements were also obtained. 
From these, several flow regimes depending on the gap/diameter parameters were 
identified. Variations on the axisymmetric disk-cylinder configuration included a 
hemispherical frontbody, rounding of the front edge of the cylinder and a change from 
circular to square cross-section. 

1. Introduction 
Problems involving the flow over two bluff bodies which interfere with each other 

have received relatively little attention from researchers, perhaps because the flow 
over an isolated bluff body is already difficult enough. A simple example of such an 
interfering flow is that in which one body is far downstream in the wake of another 
one. In  this case the drag of the downstream body is reduced owing to the reduced 
dynamic pressure in the wake in which it is immersed, while the drag of the first body 
is unaffected. This may be called a weak interaction. When the downstream body 
is brought close to the base of the first one, the drag of the former may be significantly 
reduced. In addition, the drag of the first body may be strongly affected; this would 
be a strong interaction. There appear to be no good guidelines for estimating such 
effects, yet there are many practical problems in which one bluff body is shielded by 
another one. 

While not attempting a complete review, we note that possibly the first investigation 
of this kind was made by Eiffel(1910), who studied the effect of spacing on the drag 
of two disks arranged coaxially in a stream. This configuration has recently been 
investigated again, in more detail, by Morel & Bohn (1980). In  connection with an 
investigation to reduce the drag of a tractor-trailer rig by means of a shield on the 
roof of the tractor, Saunders (1966) studied the overall drag on a prism of circular 
cross-section shielded by a disk placed coaxially upstream. A special case (figure 1) 
of Saunder’s configuration is the main subject of the present investigation. The 
inverse case, a disk placed in the wake of a coaxial cylinder, was investigated by Mair 
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FIGURE 1.  The configuration studied: a disk and a coaxial, semi-infinite 

cylinder of circular cross-section, separated by a gap. 

(1965) and further by Little & Whipkey (1979). The above examples are all for 
axisymmetric flows. The case of flow interference between two parallel circular 
cylinders with axes normal to the approaching flow has been reviewed by Zdravkovich 
(1977). 

Apart from possible practical applications, studies of flow over interfering body 
configurations can be of interest in their own right for the insights they may give 
into separated flow phenomena. 

The configuration which was investigated in the present work (figures 1 and 3) 
consisted of a circular cylinder with axis parallel to a wind-tunnel free stream and 
a disk placed coaxially upstream of the flat face of the cylinder. The diameters of 
the disk and cylinder are d ,  and d,, respectively, and g is the gap between them. Some 
observations and measurements were also made for other upstream-body shapes. In 
the absence of the upstream body, the circular cylinder in figure 1 has a pressure force 
on its upstream face which makes a contribution of about 0.75 to the drag coefficient 
(based on the cross-sectional area). This drag is connected with loss of suction near 
the edge of the front face, a consequence of separation from that edge. In  potential 
flow in an infinite stream such a cylinder, assuming i t  to be an infinite half body, would 
have zero drag, the high pressure near the centre of the face being balanced by the 
suction near the edge. This is true in fact for any semi-infinite body, whatever the 
nose shape (Prandtl & Tietjens 1934; Morel 1978). Thus, such a configuration is 
attractive for attempting to elucidate the effect of an upstream interfering body 
because the flow in the region of interest is not complicated by coupling to a base 
flow downstream. 

Even with this simplification the possible flow patterns can be expected to be 
quite complex, with separation streamlines usually springing from the edges of 
both the cylinder and the disk. As a first attempt to classify the possibilities, we 
prepared figure 2 in which different conceivable flow patterns formed by the 
separatinglreattaching streamlines from the frontbody are depicted qualitatively. 
The patterns were drawn by simply superimposing on a disk-wake profile the 
rectangular rearbody profile, varying the diameter and gap. For the disk-wake 
profile, the experimental result of Carmody (1964) has been used. In the real flow, 
of course, the disk wake will be strongly altered when the gap between the bodies 
is not large and this classification could at best be only a rough guide to the actual 
flow patterns that occur. Nevertheless the classification of flow patterns shown in 
figure 2 provides an interesting and useful reference for examining the flows that were 
observed in the experiments to be described. Of the nine different flow patterns 
defined in figure 2, four correspond to the four flow regimes denoted by A, B, C, and 
D in the (9, d)-plane; four others to the boundaries AB, CB, CD and BD between those 
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FIQURE 2. (a) Patterns obtained from intersections of a disk-wake profile and a semi-infinite 
cylinder. ( b )  Corresponding regimes in the (g, d,)-plane. 

regimes; and the ninth (CBD) to the common point between three of them. This latter 
occurs for a particular pair of values of the diameter dJd2  and gap ratio gld, .  In  this 
particular configuration the disk wake joins smoothly (tangentially) onto the 
cylinder. As will be seen, such a flow pattern actually occurs (though not a t  exactly 
those values) and corresponds to very low values of the drag. 

2. Experimental details 
The experiments were carried out using two models, one designed for force and 

pressure measurements in a wind tunnel and the other for flow visualization and 
laser-Doppler velocimetry in a water tunnel. 

The configuration shown in figure 3 was built with d ,  = 8 in. (20.3 em) for 
installation in the GALCITt Merrill Wind Tunnel which has a test section 
32 in. x 46 in. (81 cm x 117 cm) in cross-section and 104 in. (264 cm) long; its turbu- 
lence level is about f%. The model had two major parts - a metric forward portion 
which was connected to a force balance and a non-metric rear portion rigidly mounted 
to the tunnel walls. The metric portion was composed of a frontbody, sting and a 
short section of the rearbody. For the majority of the measurements the rearbody 
was a circular cylinder of 8 in. (20.3 cm) diameter and 32 in. (81.2 cm) length. The 
length of the rearbody, 4 diameters, was enough to ensure adequate approximation 
to a semi-infinite body. Measurements of the distribution of pressure on the side of 
a long, flat-faced cylinder (e.g. Ota 1975) show that the pressure returns to free-stream 
values within2 diameters downstream. The frontbodies were mainly flat disks, Q in. 
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FIGURE 3. Schematic diagram of the experimental model. 
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(0.32 cm) thick, varying in diameter from 2 to 8 in. (5-20.3 cm), mounted coaxially 
in front of the rearbody on a la in. (3.1 cm) diameter sting. A hemisphere of 8 in. 
(20.3 cm) diameter was also used. The rearbody face was replaceable, as were the 
frontbodies. Some measurements were also made on a rearbody of square cross-section 
with square-plate frontbodies. 

The central sting supporting the metric portion of the model was mounted on a 
force balance which provided direct analog readout of the three aerodynamic forces 
and the three moments acting on the supported model. Pressure distributions on the 
face of the rearbody and in the slot between the metric and dummy portions of the 
model were measured, using &in. (0.08 cm) pressure orifices and a 0-100 mmHg 
Barocel pressure transducer. The transducer output was measured on a Hewlettc 
Packard Timer-Counter DVM with a variable integration time up to 10s. To 
determine the symmetry of the flow, pressure taps on the rearbody face were arranged 
along several radii and side and lift forces were monitored. It was possible with these 
observations to detect misalignment of the model with the freestream of less than 
0.5' (Koenig 1978). All results presented here are for flow/model inclinations of less 
than 0.5'. The force and pressure measurements were made a t  speeds from 25 to 
190 ft/s (7.6-57.9 m/s); the corresponding values of the Reynolds number Re based 
on d ,  were 1 x 105-8 x lo5. Except for a very few cases, to be discussed, no significant 
dependence of the drag coefficient or the pressure coefficient distributions on 
Reynoldsnumberfortherange Re = 1 x 105-8 x 105~a~~b~ervedintheseexperiments. 
All geometries were investigated over this Reynolds-number range ; checks to verify 
observations and determine repeatability were concentrated, however, at 
Re = 5 x lo5. The results to follow are, therefore, at Re = 5 x lo5 unless otherwise 
noted. Repeatability of the measured forebody-system drag coefficient, CDm, in these 
experiments was estimated to be k0.004. 

A second model, with d, = 4 in. (10.2 cm), was built for installation in the GALCIT 
Free Surface Water Tunnel (Ward 1976). This model was used for flow-visualization 
experiments and laser-Doppler velocity measurements. For the flow visualization, 
diluted food colouring was injected into the flow from the face of the frontbody, the 
face of the rearbody, or from an upstream probe. These experiments were made at  
a water speed of 3.5 ft/s (1 .1  m/s) giving a Reynolds number of 1 x lo5. 

Our intent in these experiments was to investigate the behaviour of the forward 
portion of a frontbody-rearbody combination. Specifically, the system of interest is 
the entire frontbody and the face of the rearbody (see figure 3), which we define as 
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FIGURE 4. Typical measured results for the axisymmetric forebody-system drag coefficient : 
reference area = fxd:; Reynolds number, Re = U ,  d, /v  = 500000. 

the forebody system. For practical reasons it was necessary to provide a connection 
(sting) between the frontbody and rearbody and to include a short segment of the 
rearbody downstream of its face as a part of the metric model (figure 3). Consequently 
the measured drag includes contributions from the sting and the sides and base of 
the short rearbody segment. The pressure force on the base of the short rearbody 
segment was subtracted from the drag balance measurement, using the pressure 
measured in the gap between that and the static part of the rearbody. The measured 
forebody system drag coeficient is then defined as 

force from balance- [ ( p - p , )  dA 

In what follows, the drag measurements as determined from this definition are 
preserited without correction for blockage or for extraneous skin friction on the short 
metric segment of the rearbody. This allows an unprejudiced record of the 
measurements and is sufficient for a comparative study of the effects of various 
parameters. Where it is important to estimate the free-stream values of C,  more 
accurately, especially the very low values, corrections for blockage and extraneous 
skin friction are applied, as described in the Appendix, and the resulting, corrected 
value is denoted by CDE. 

3. Forebody drag coefficients for circular cross-section 
The value of CDm of the flat-faced cylinder when free from a frontbody was found 

to be 0.72. With the blockage correction (Appendix) the corrected value is found 
t,o be CD, = 0.75. Values ranging from 0.7-0.8, obtained by various methods, have 
been reported by Polhamus (1957), Stanbrook (1964), Hoerner (1965) and Norris & 
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FIGURE 5 (a ,b) .  For description see opposite. 
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FIGURE 5. Measured axisymmetric-forebody drag coefficient. 
(a), ( b )  Re = 500000; (c )  0,  Re = 500000; 0 ,  650000. 

McGhee (1966). Besides measurement uncertainties, some of this variation may be 
due to differences in freestream turbulence level and scale (Bearman 1971). 

Placing flat disks of various diameters a t  various gap distances ahead of the 
cylinder face produces large variations in the forebody-system drag coefficient, as 
shown for several disks in figure 4. These are all for Reynolds number Re = 5 x lo5, 
based on d,.  For g/d,+O, values of C,, for all values of d J d ,  < 1 tend to 0.72, as 
expected. As the gap ratio increases, there is a rapid decrease in C,, as the shielding 
effect of the frontbody develops. For each disk, a minimum value of C,, is attained; 
with further increase of g / d ,  the forebody system drag rises, presumably approaching 
eventually the sum of the free-field values of the two bodies for g / d 2 + m .  A minimum 
value of C,, occurs for each value of d, /d , .  What is remarkable is that for some 
configurations the drag of the forebody system is extremely low. In  particular, for 
d J d ,  = 0.75 and g/d2  = 0.375 the measured value of C,, was 0.01. (After correction 
for blockage and extraneous skin friction, C,, is estimated to be 0.03.) Although the 
uncertainty of this low value may be as much as 50%, i t  is clear that the drag of 
this particular disk-gaprearbody configuration is comparable to that of a solid 
forebody with no separation. 

The minimum value, for each value of dJd, ,  will be denoted by C s  and the 
corresponding gap ratio by g*/dn. (Because the minima are relatively broad, i t  is 
sometimes difficult to define the value of g* precisely.) These values and the associated 
configurations will be called ‘optimum ’. 

The complete set of results, for all the flat disks used, is presented in figure 5. The 
general observations on figure 4 may be seen to apply to a wide range of forebody 
parameters. Some exceptions to the generally smooth variation with changing g/d ,  
are observed for values of d J d ,  = 0.531,0.563, and 0.875. The first two of these show 
closely spaced minima in C,, the one at larger g / d ,  being lower. These measurements 
were repeatable, the non-smoothness apparently not due to experimental error or 
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FIGURE 6. Visualization of rearbody alone. 

scatter. Flow visualization indicated that the flow in these configurations was rather 
unsteady. 

The curve for dJd, = 0.875 has a sharp minimum at g/d,  = 0.094 and another 
shallower one a t  g / d ,  = 1.0, both quite repeatable. At g / d ,  = 0.094 the flow was very 
steady and stable, resisting even severe attempts to perturb it. The result was also 
insensitive to Reynolds number, over the range 1-8 x los, and to  roughness (no. 120 
sandpaper) on the face of the disk. On the other hand, for gld ,  = 0.125, the flow 
condition was sensitive to  Re and roughness, jumping from the higher- to the 
lower-drag regime with increasing Re and vice versa with decreasing Re, but with 
hysteresis. The solid point in figure 5 (c) corresponds to  the low-drag regime attained 
for Re > 6.7 x lo5, with roughness. It should also be noted that for the curve labelled 
d J d ,  = 0.156 the ‘disk’ was the face of the sting, the diameter of the latter being 
0.1 56d,. 

4. Flow patterns and pressure distributions 
Using diluted food colouring injected through the upstream face of the model in 

the water tunnel the pictures in figures 6 and 7 were obtained. It should be noted 
that on some of the pictures the dye flow is biased to one side, and the flow pattern 
is exhibited more weakly or not a t  all on the other side. 

The cylinder without frontbody is illustrated in figure 6, where the large region 
of separation, originating a t  the shoulder, may be seen. It corresponds well with 
observations in the wind tunnel, where tuft and surface probe measurements indicated 
a flow-reversal region extending la diameters downstream of the shoulder. 

Flow patterns with frontbody in place are illustrated in figure 7 for several different 
disks placed at various distances upstream of the cylinder. I n  $9 these flow patterns 
are compared with those postulated in figure 2. Photographic exposure times are 
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FIGURE 7 ( a ) .  For description see p. 177. 
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FIGURE 7 ( b , c ) .  For description see opposite. 
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FIGURE 7. VISUALIZATION OF dJd,; *, optimum gap. (a) dJd, = 0.25, 
(b)  0.5, (c) 0.75, (d) 0.875, (e) 1.0. 
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short enough that non-steady aspects of the structure are exhibited. The optimum 
configurations are indicated by an asterisk (*). I n  studying these patterns i t  is 
instructive to refer to  figure 8, where pressure distributions on the face of the cylinder 
are plotted. Results for each value of d , / d ,  will now be discussed separately. 

d J d ,  = 0.25. Figure 7 (a) shows how the disk wake changes as the disk approaches 
the cylinder. For large gaps, reattachment is onto the sting but at g ld ,  = 0.75 (i.e. 
g ld ,  = 3.0) the wake has opened up and reattachment is onto the cylinder face. 
Pressure distributions in figure 8 (a) show how the disk wake depresses the pressure 
over the central part of the cylinder face for configurations near optimum. But when 
the disk is very close to the cylinder face it has little effect on the pressure distribution. 

d l / d 2  = 0.5. At conditions near optimum ( g / d ,  = 0.75 in figure 7b)  the separated 
shear layer from the disk attaches at or near the shoulder of the cylinder, but there 
appears to  be considerable unsteadiness in the shear layer. Pressures on the face of 
the cylinder have become negative (figure 8b) .  For smaller gaps (g /d2  = 0.375) the 
shear layer is steady and very thin and reattachment is on the face of the cylinder, 
with correspondingly higher pressure there. For large gap ( g / d ,  = 1.625) large 
structure can be seen in the free shear layer, which again seems to be reattaching 
at or near the shoulder of the cylinder. 

d , / d ,  = 0.75. Qualitatively the flows are similar to those a t  d , / d 2  = 0.5 but a t  and 
near optimum conditions the values of C, are very much lower. It may be seen from 
the flow pictures (figure 7 c )  that  the free shear layers are very thin and reattach onto 
the cylinder shoulder. The boundary layer on the sides of the cylinder is also thin. 
The pressure coefficient (figure 8 c )  is negative over all the cylinder face and has an 
interesting minimum near the outer part. The contrast between the cases g /d2  = 0.5 
andg/d, = 1 .O should be noted. For the latter the shear layer contains large structures 
and grows much more rapidly; C, is an order of magnitude larger. 

d J d ,  = 0.875. Very low values of C, occur only for very low values of the gap. 
The corresponding optimum flows (figure 7 d )  have the same qualitative features its 
for d J d ,  = 0.75. The pressure minimum near the outer part of the cylinder face 
(figure 8 d )  is very prominent. At larger but still small gaps, for which C, is an order 
of magnitude higher, the shear layer is tending to  reattach onto the sides of the 
cylinder. It is qualitatively similar to  the flows in the next category. 

d l / d 2  = 1.0. (See figure 7 e . )  For small gaps, reattachment is onto the side of the 
cylinder but for g l d ,  = 1 .O and 1.625 there is a tendency for reattachment onto the 
edge. The optimum condition occurs within this range, at g ld ,  = 1.5 (flow picture not 
obtained). Except near optimum, the pressure distribution on the cylinder face 
(figure 8e)  tends to be quite uniform. 

At the maximum gap, g / d ,  = 3, attained in these experiments, the interaction for 
all disk diameters is still strong. For g/d,+oo (and if there were no sting present), 
the asymptotic forebody-system drag would be the sum of the forces on a free disk 
and on the free face of the cylinder. Normalized with respect to d, ,  the freestream 
value would be 

where we have used for the disk the freestream value 1.12 (Morel & Bohn 1980). For 
d J d ,  = 0.5,  as an  example, the resulting asymptotic value would be C, = 1-03. In 
figure 4, at g ld ,  = 3 and d , / d ,  = 0.5 the value of C, is still far from that value. 
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FIQURE 9. The corrected minimum drag coefficient for each disk and the gap at which it occurs. 
The value of dJd, is shown beside each plotted point. Roman numerals refer to flow regimes. 

5. Drag regimes based on optimum flows 
In  figure 9 the values of C& for each value of dJd ,  from figure 5 have been plotted 

against the corresponding optimum gap ratio g*/d,. The values of d:/d, are noted 
beside each point. The points group themselves onto four branches that have been 
selected as shown with the help of figure 10, where the data are plotted in the 
(9, d,)-plane. Also use was made of the fact that one of the points must correspond 
to C& = 0.75 at g*/d, = 0. 

One of the branches (I) will be called the Zow-drag brunch (C& < O . l ) ,  I1 is a 
medium-drag brunch (0.1 < C& < 0.3) and 111 and IV will be called high-drag branches 
(C& > 0.3).  Table 1 lists the corresponding ranges of d:/d,  and g*/d,. In  figures 9 
and 10, note the jump from branch I to IV at d:/dz = 0.88. In figure 10, the low- 
and medium-drag branches pass close to the free-streamline locus, which is discussed 
in the following section. This locus passes close to the triple point BCD of figure 2. 
The uncertainty bar on the point for d, /d ,  = 0.813 is to draw attention to the flatness 
of the minimum in figure 5. Shorter bars on other points are omitted. 

This classification of the optimum drag coefficients corresponds to distinctively 
different flow types. In the high-drag regime 111, the disk is too small to guide the 
separated flow onto the shoulder of the cylinder ; in the high-drag regime IV, the disk 
is too close to the cylinder; in the low-drag regime I, the disk is in a range where 
the separation streamline can reattach at or near the shoulder, in a cavity configuration 
close to the free-streamline ideal; the medium-drag regime I1 is a less stable 
counterpart of I, less stable because the gap is too large. 
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FIGURE 10. The optimum configurations: 0, present measurements, the bar indicates uncertainty 
in identifying g*/d, for this disk (see figure 5b)  ; continuous curve is the axisymmetric free-streamline 
result of Brennen (1969); +, axisymmetric free-streamline result of Struck (1970). 

Regime . . . I I1 I11 IV 
Gc Low Medium High High 

< 0.1 0.1-0.3 0.75-0.3 > 0.3 
@Id2 0.56-0.88 0.3-0.56 0 . 3  > 0.88 

TABLE 1. Optimum-drag regimes 

g*ld, 0.094-0.6 0.6-1.1 0-1.1 > 1.1 

6. Free-streamline model 
As may be seen in figure 7, the flow patterns for optimum configurations on the 

low-drag branch are similar to those postulated for the triple-point configuration BCD 
in figure 2, with the separation streamline from the edge of the disk joining onto the 
rearbody at the shoulder. If the pressure within the cavity formed by the disk and 
the cylinder face could be assumed uniform this would be a free-streamline flow, like 
that sketched in figure 11, with constant pressure along the free-stream surface. The 
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CP. cpok 
FIGURE 11 .  Schematic diagram of free-streamline models. (a) Depicts the disk-cylinder Joukowsky 

(1890) model and the free-streamline pressure. (b )  is the Riabouchinsky (1920) model. 

free streamline springing from a at the edge of the disk (or flat plate, in two-dimensional 
flow) is a t  constant pressure p ,  up to the point b, the edge of the rearbody. The cavity 
pressure coefficient 

where Us is the constant value of flow speed along the free streamline. 
The solution to the problem of finding the free-streamline shape is well known for 

the two-dimensional case; it was first found by Joukowsky (1890) using mapping 
techniques (also see Roshko 1954). For the axisymmetric case, numerical techniques 
have to be used; the result for one value of C,, has been obtained by Struck (1970). 
A closely related solution is that of Riabouchinsky (1920) for the free-streamline 
cavity flow between two flat plates (figure 11 b). With disks instead of flat plates, the 
corresponding axisymmetric solution was calculated numerically by Brennen (1969). 
We have made use of the latter results by assuming that the shapes of the free 
streamlines in the Joukowsky flow are very nearly the same as in the front half of 
the Riabouchinsky flow. Brennen’s calculations, for values of d J d ,  up to 0.675, have 
been extrapolated to d l / d z  = 1, g/d, = 0 as shown in figure 10. Also shown is the single 
point calculated by Struck; it gives some indication of the adequacy of using the front 
half of the Riabouchinsky configuration to represent the disk-cylinder model. 

The experimental low-drag branch I lies close to the theoretical, free-streamline 
geometry; the medium-drag branch I1 is a little below. 

The free-streamline pressure coefficient C,, is plotted against d J d ,  in figure 12. To 
obtain an estimate for values of d J d ,  larger than those computed by Brennen, an 
approximate formula was developed by making use of a semi-empirical relation by 
Garabedian (1956) for the drag of an isolated disk with a cavity wake, namely 

- 

Co, = 0.827(1 -Cp,), 

where C,, is the drag coefficient of the disk based on its own diameter. Then, following 
an idea by Eppler (1956), the constant-pressure, free-stream surface can be regarded 
as part of a solid body formed with the disk and the rearbody. The drag of such a 
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FIGURE 12. Axisymmetric, free-streamline pressure coefficients : truncated continuous curve is from 
Brennen (1969) ; extended continuous curve is the interpolation formula, equation (6) ; + , Struck 
(1970) ; 0,  representative cavity-pressure coefficients from present measurements. 

semi-infinite body in unbounded potential flow is zero (Prandtl & Tietjens 1934), i.e. 

0 = D = (P-p,)dA,  A = projected frontal area, 

(3) 

where @I, -P, 1 4  = cpf Qm A,  is the contribution from the front face of the body 
and @,-pm) (A,-A,) = Cpsqm(A,-Al )  is from the constant-pressure part of the 
surface. This gives a relation between the free-streamline pressure coefficient and the 
front-face force, 

s 
= (F1,-P,)A,+@,-Pm) ( 4 - A A  

-Cps(Az-Al)  = Cp,Al.  

On the other hand, the drag of a disk may be written 

C D ,  = cp, - CPS’ (4) 

where C,, is now the base pressure coefficient for the disk. With the reasonable 
assumption that, for given base pressure, the disk in the cavity configuration 
experiences very nearly the same force as when isolated, the above set of equations 
can be solved to find 

- 0.827 
CPS = (d,/d,)’ - 0.827 ‘ (5) 
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This formula will evidently not be correct for d, /d ,+ 1 for which, according to the 
free-streamline model, C,, +- 00. Thus the alternative interpolation formula, 

which has the right form for d, /d ,  + O  as well as for d, /d ,  + 1, seems more appropriate. 
As shown in figure 12, i t  agrees well with the numerical calculations of Struck for 
the Joukowsky model and of Brennen for the Riabouchinsky model. 

Also plotted in figure 12 are experimental values of C,, which have been chosen 
to be representative of the cavity pressures in the experimental configurations. 
Choosing these values is of course problematic since pressure is not in fact uniform 
throughout the separated region because it is a dynamic region, albeit at low dynamic 
pressures. Since pressure measurements were made on the cylinder face (figure 8) and 
not on every disk base, the former were used together with the overall drag 
measurement first to compute CD, and then to deduce the average disk base pressure 
from (2). These are the values which are plotted in figure 12. In the low-drag range 
(I) they lie quite close to the free-streamline model calculations; in the medium-drag 
range (11) C,, departs considerably from the theoretical values and even becomes 
positive. 

7. A model for drag at optimum conditions 
The preceding comparison of experimental results with parameters from the 

free-streamline model indicates that good correspondence occurs for the configuration 
on the low-drag branch. This suggests the possibility of estimating the drag of these 
configurations by replacing the free streamline in that model by a real shear layer. 
The procedure we use can be illustrated by reference to the problem of two-dimensional 
flow over a cutout in a wall which is parallel to a free stream (figure 13a). In  this 
case the free streamline is simply the straight line ab and the drag of the cavity is 
zero. In the real flow there is a drag force D, which may be obtained from the 
momentum balance on the fluid enclosed by contour abcdu; it is the negative of the 
net force on the cavity walls, i.e. 

where - p m  is the Reynolds stress along ab and - p E  is the mean momentum 
transport, which is not zero because the dividing streamline in general does not 
coincide with ab and thus V is not zero (Gharib 1983). Equation (7) may be written 

D = c,pu2,g, (8) 

where C, is the mean value (over the gap) of the generalized shear stress, 
- 

rg = -pu'v' - p i Z  

normalized by p V!. 
If the sketch in figure 13 (a)  is taken to be a meridional section of an axisymmetric 

cylinder, as in Gharib's experiment, then D = C, pvZ, xd, g. With C,  based on frontal 
area, 
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FIGURE 13. Schematic diagram of cavity flow models. (a)  A cutout in a 

wall ; (b )  represents the present disk-cylinder geometry. 

This result is applicable to the case in which the frontbody in our configuration is 
a hemisphere, discussed in a later section. 

To apply these ideas to the present experiments on the disk-cylinder configuration, 
those flows which lie close to the free-streamline trajectory in figure 10 may also be 
viewed as cavity flows (figure 13 b). The cavity drag and hence the forebody drag 
(assuming no change in CPf) is then 

rgrsnz-ds  = 2x 

where r,(x) is the free streamline boundary and dx is the x component of the vector 
element ds along the free streamline. For given cavity pressure C,, the pressure on 
the front of the disk and along the dividing streamline is assumed to be the same 
as in the free-streamline model. The appropriate reference for rg is now the velocity 
on the free streamline, i.e. 

7g = c , p q ,  (104  

and noting that now Us = (1  -C,$ U,, we obtain 

D = 2nC, pV,(l -Cp,) r,dx. JOU 
The integral could be calculated numerically from the free-streamline results for 
the various optimum geometries. Instead, in view of the various assumptions 
already made, it seems sufficient to approximate it by an average value 
r, = a(., + r2)  = a(d, + d 2 ) ,  which is equivalent to approximating the area of the free 
surface by that of a truncated cone. This gives then 

and (10c)- 

Next, (6) is used to write C,, as a function of dJd2 and then the numerical results 
of Brennen, as shown in figure 12, are used to obtain a relation between dl /d2  and 
gld, .  Thus C,  can be obtained as a function of either g/d2  or d , / d 2 ,  with C, as a 
parameter. 

With gld,  as the variable the formula could be plotted in figure 9 but instead we 
present the data in figure 14, where d J d ,  is used as the variable. Here, the measured 
values of optimal C,, corrected for effects of blockage and extraneous skin friction 
as explained in the Appendix, are compared with the prediction of (lOc) for three 
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FIGURE 14. Drag at optimum conditions: 0,  corrected measurements of the minimum-drag 
coefficient for each disk; -, estimates of forebody drag from equation (lob) for different values 
of c,. 

values of C,. One value (C, = 0.012) is typical of Reynolds stress in a plane turbulent 
free shear layer (e.g. Liepmann & Laufer 1947; Wygnanski & Fiedler 1970), while 
the lower (0.004) and higher (0.025) values are typical of values measured in our 
low-drag and medium-drag regimes, respectively, as described in the following 
section. 

8. Flow-field measurements 
The results presented in preceding sections indicate that, corresponding to the 

quantitative differences in drag, there are fundamental differences in flow properties 
in the different regimes. To obtain further insight into these, and to obtain some 
measurements of the Reynolds stresses, we undertook some limited? measurements 
of flow velocities in the low-drag and medium-drag regimes. 

The velocity field between the forebody and rearbody was investigated with a 
single-particle laser-Doppler velocimeter, operated in the dual-scatter mode. These 
measurements were made in the GALCIT free-surface water tunnel using the 
flow-visualization model. The Reynolds number was fixed at 1 x lo5 based on d,.  The 
velocimeter, designed and built especially for this experiment under the guidance of 
Dr P. E. Dimotakis (Koenig 1978), provided measurements of a single, but selectable, 

t Limited by the cost of operating the water facility, 

7 Y L M  156 



188 K .  Koenig and A .  Roshko 

velocity component. A special feature of the velocimeter was that each of the two 
equal-intensity scattering beams (obtained by splitting the single beam from a 5 mW 
He-Ne laser) was frequency shifted by a Bragg cell (Intra-Action model ADM-40) 
with the frequency difference between the beams adjustable from 10 kHz to 10 MHz. 
The wide frequency range available for shifting permitted the velocimeter to be 
optimized so that there was no directional ambiguity in regions of recirculating or 
highly turbulent flow while a t  the same time the loss of accuracy due to the velocity 
bias was minimized. The forward-scattering light from a particle passing through the 
overlap volume was focused into a photomultiplier tube which, in turn, provided the 
input to a counter-type processor (Dimotakis & Lang 1974). The counter provided 
the time of flight ti and the number of fringes crossed, ni (which generally was required 
to be greater than 20), for each acceptable particle passage. From t i ,  ni and the fringe 
spacing the corresponding velocity component ui could then be determined. The 
filtered but unseeded flow yielded a sample rate that  was maintained a t  about 
200 samples/s. 

We denote the streamwise velocity component by u and the radial component 
by v. The various statistical properties of each component, for example U, the mean 
streamwise velocity, and p, the mean square fluctuation in the streamwise direction, 
were computed from ensemble averages of ui, each ensemble consisting of 4000-16000 
realizations. The Reynolds stress - u" was obtained from measurements a t  45' 
to the freestream direction. Because of the fairly low data rate i t  was necessary to 
correct the measurements for the sampling bias towards higher-velocity particles 
(Dimotakis, Collins & Lang 1978). Corrections were also necessary to account for the 
velocity gradient across the measurement volume. Details of the measurement system 
and the data-reduction schemes are more fully described by Koenig (1978). 

Samples of measurements obtained from traverses through the cavity on lines 
passing through the model axis are presented in figures 15-18. These figures display 
results for one example of a medium-drag geometry, dJd, = 0.5, and one example 
of a low-drag case, dJd2 = 0.75, a t  their optimum gaps g*/d2 = 0.75 and 0.375, 
respectively. The traverses shown are a t  one axial location for each configuration, 
x / g  = 0.67 for the medium-drag geometry, x / g  = 0.5 for the low-drag geometry, with 
x measured downstream from the plane of the disk. 

The mean streamwise-velocity component U is compared for the two examples in 
figure 15(a) where straight lines have been used to  connect the measurements, 
omitting the actual data points. Smoothed or interpreted versions of these profiles 
are presented in figure 15 ( b ) .  For both configurations, in the flow external to  the shear 
layer U at first increases from U ,  as the cavity is approached due to the potential-flow 
acceleration of the fluid as i t  passes over the body. Indicated on figure 15 ( b )  by broken 
lines are the continuations of these potential-flow profiles as they would appear in 
a free-streamline flow, based on the nominal cavity pressures. The actual profiles of 
course are modified by the free shear layers. It may be seen that the free shear layer 
is much thicker for the medium-drag case than for the low-drag case. The profiles 
inside each cavity indicate that the mean flow is predominantly a single vortical 
motion filling the cavity, with the reversed velocity, near the centreline, reaching a 
maximum of about 0.5U,  for both cases. 

Figures 16 and 17 present profiles of the streamwise (u'"):, and radial (p):, 
root-mean-square velocity fluctuations, respectively. The medium-drag geometry is 
characterized by turbulent fluctuations having amplitudes more than twice as great 
as those occurring in the low-drag configuration. The extent, radially outward, of the 
turbulence is considerably greater for the medium-drag geometry and the fluctuations 
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FIGURE 15. (a) Mean streamwise-velocity profiles through the cavity for two optimum geometries. 
The medium-drag disk is d J d ,  = 0.5, g*/d,  = 0.75 and the measurement station is x/g* = 0.67; 
the low-drag disk is d J d ,  = 0.75, g*/d,  = 0.375, x/g* = 0.5, x measured downstream from the disk. 
Straight lines connect the data points which have been omitted. (b) The profiles of (a) smoothed. 
Broken lines represent the potential-flow profiles for free-streamline flow at the nominal cavity 
pressure. 

7-2 
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FIGURE 16. Root mean-square streamwise-velocity fluctuations through 
the cavity for the two optimum geometries of figure 15. 

remain large inside its cavity. In  the low-drag case the turbulence is quite small 
midway into the cavity ( r / rs  < 0.6) but there is a pronounced increase in u‘ and v’ 
near the model centreline. Although figure 15 suggests that the mean flow in each 
cavity is similar, the profiles of r.m.8. turbulent velocities in figures 16 and 17 clearly 
show that in detail the flows are quite different. The flow in the low-drag cavity 
appears to be a fairly well defined and steady ‘vortex ’, easily definable in short-time 
averages, which perhaps varies slightly, giving rise to the increased fluctuations near 
the cavity bottom. This behaviour is consistent with that observed in the flow 
visualization. In the medium-drag flow, on the other hand, the turbulence level is 
high throughout the cavity and the vortical motion is clearly defined only in long- 
time averages. 

Perhaps the most important difference between the two configurations is revealed 
by the profiles of streamwise Reynolds stress - presented in figure 18. The stress 
in the low-drag flow is very small except for a narrow peak in the shear layer and 
a small region of reversed stress near the sting. The maximum stress in the low-drag 
shear layer is 0.004 relative to pUm. In contrast, in the medium-drag geometry the 
turbulent stress is high inside the cavity as well as the shear layer, the maximum 
observed value being 0.023 with respect to pVm. To compare properly these stresses 
they should be determined in the local coordinate system of the shear layer and 
referenced to the maximum velocity just outside the shear layer. When this is done 
for the profiles presented in figure 18 (details of this transformation are described by 
Koenig 1978) the maximum tangential turbulent stress coefficient for the low-drag 
case does not change, so that T,  = O.O04pq, while maximum stress for the medium- 
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FIQURE 17. Root mean-square radial-velocity fluctuations through the 
cavity for the two optimum geometries of figure 15. 

(Py/ u 

drag case becomes 7, = 0.025q.  The coefficients may be compared to the values 
0.01 15 and 0.016 deduced from the measurements by Liepmann & Laufer (1947) and 
by Wygnanski & Fiedler (1970) respectively, in self-similar, plane free shear layers. 
The measurements are summarized in table - 2 where ( - n) denotes the correlation 
in the (2, r )  coordinate system while (-u'w'), is the value obtained by transforming 
to the coordinate system of the shear layer at the point of measurement. The latter 
is the proper one to compare with inferences about C, in the model for the drag. It 
should be emphasized that these values are for only one position in each case, roughly 
midway along the shear layer; the distribution of shear stress at other points along 
the shear layer was not determined. 

If we take these values to be representative of the mean value C, for the whole 
shear layer, as we have in figure 14, ignoring the fact that the latter may include some 
component from (-uV), the numerical agreement with our drag model is surprisingly 
good. Thus, in figure 14, the curve for C, = 0.025 passes through the upper part of 
the medium-drag range while the curve for C, = 0.004 is just below the lowest values 
in the low-drag range. As Gharib (1983) has shown, the variation within the low-drag 
range can be considerable. 

It appears from these comparisons that an important distinction between the 
low-drag and medium-drag regimes is the marked difference in the turbulence level 
in the free shear layer which spans the gap, exemplified by the factor of six in the 
Reynolds stress. 

The general nature of the low-drag mean cavity flow is perhaps best seen in the 
velocity-vector plot depicted in figure 19. These vectors are determined from profiles 
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FIGURE 18. (a) Streamwise-shear-stress profiles through the cavity for the two optimum geometries 
of figure 15. ( b )  The shear-stress profiles of figure 19(a)  smoothed. 
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Low drag 0.5 0.75 0.38 0.80 1.34 0.004 0.004 0.38 
Medium drag 0.67 0.50 0.75 0.21 1.10 0.023 0.025 0.52 

TABLE 2. Maximum values of Reynolds stress at the noted values of x / g  
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FIGURE 19. Velocity vectors and streamlines for the low-drag 
optimum geometry, dJd, = 0.75, g*/d, = 0.375. 

of U and V at three axial stations (cf. figure 17). The axisymmetric stream function 
q? defined by u = ( l /r )  (a$/&-), w = - ( l / r )  (a$/ar) was calculated; some of the 
streamlines are freely drawn in figure 19. The streamline $ = - 1 is normalized to 
represent the total flow recirculating in the cavity ; for comparison, the corresponding 
flux q? = 1 in the outer flow is also shown. At  upstream infinity, this amount of flow 
is enclosed in a stream tube of diameter 0.343d3,. Figure 19 shows that the mean flow 
is dominated by a single vortical motion filling the cavity. The lower half of the cavity 
has roughly constant velocity in the upstream direction. 

9. Discussion of drag regimes and flow patterns 
In  the preceding section we have identified and classified several flow regimes on 

the basis of drag minima in figure 5 and have, furthermore, argued that the flows 
in two of them (at the lower values of drag coefficient) can be modelled as cavity flows, 
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with useful connections to free-streamline theory. In  the following we review our 
measurements and observations and make some inferences about the phenomena 
occurring. Most striking is the comparison of regimes I and 11, the low-drag and 
medium-drag regimes defined in figure 9. 

In regime I the flows are evidently close to free-streamline flows (figures 7, 10, 12); 
the free shear layer reattaches onto or close to the shoulder of the rearbody; the 
velocity fluctuation level in the free shear layer is very low; correspondingly the 
Reynolds stress is lower, by a factor of about 3, than the stress in plane, free turbulent 
shear layers ; the low value corresponds to very low values of drag in this regime. One 
explanation for the depressed value is that the shear layer spanning a cavity is quite 
different from a free shear layer. This is what Gharib (1983) found a t  low Reynolds 
number, where so-called ‘laminar ’ periodic oscillations are predominant and are 
modified by ‘feedback’ from the downstream edge. At high Reynolds number the 
so-called ‘coherent ’ large structures of the turbulent layer could be similarly affected. 

The curvature of the shear layer in the present geometries may also be a factor; 
a large reduction of Reynolds stress was observed by Castro & Bradshaw (1976) in 
curved turbulent free shear layers. 

In  the medium-drag regime (11) the flow patterns at  optimum drag also appear 
to be close to free-streamline flows (figures 7, 10). However, the free shear layers are 
thicker and the level of velocity fluctuation and of Reynolds stress is much higher 
(figure 17) than in I. Although the layers are curved, Reynolds stresses are even higher 
than in a plane shear layer. In addition, a fairly high level of Reynolds stress exists 
deep in the cavity. This indicates that there is a large-scale oscillation involving the 
whole cavity; its coupling with the vortex structure in the free shear layer could 
account for the high Reynolds stress there. Such coupling could occur through the 
effect of the cavity oscillations on the reattachment region near the shoulder, which 
has upstream influence on the shear layer, etc. (Rockwell 1983). This large-scale 
cavity oscillation may be regarded as the beginning of a wake mode of the forebody 
(Gharib 1983), strongly influenced by the presence of the rearbody. In  the two- 
dimensional counterpart it may be expected that a splitter plate on the axis would 
stabilize the oscillations and extend regime I to larger gaps. 

It is useful now to return to figure 2, where we had postulated what flow patterns 
might exist and in which region of the (9, d)-plane they might occur and to compare 
them with what actually occurs. Figure 2 shows steady, mean flows; to make the 
comparisons precisely it would be best to have mean-flow streamlines, especially the 
zero or dividing streamlines, which are the ones sketched in figure 2 and which 
determine the reattachment points. To obtain this, say from velocity measurements 
as was done for figure 19, is a task of large proportion that we were not able to 
undertake. Instead, we made the comparisons more qualitatively and subjectively 
by examining the flow pictures in figure 7, as well as others at our disposal, sorting 
them out as well as possible into the various types postulated in figure 2 and locating 
them on the (9, d)-plane. The position of the mean-zero streamline can then only be 
estimated, as somewhere near the middle of the visible free shear layer, and the 
position of reattachment guessed correspondingly. The result is shown in figure 20, 
plotted on the same g,d ,  coordinates as figure 2. Although rather subjective and 
approximate, we believe that the classification is accurate enough to reveal several 
interesting results, as follows. (The reader is invited to check i t  with figure 7.) Most 
of the flow patterns postulated in figure 2 can be recognized in the flow pictures of 
figure 7, but the regions of the (9,  d,)-plane in which they occur are rather different 
from those in figure 2. Regimes A, C, and D are in approximately the same locations 
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FIGURE 20. Flow regimes in the (g, d)-plane, inferred from flow pictures. 

in the (g,d)-plane as in figure 2, but their boundaries are considerably shifted, as 
expected. 

We were not able to find any flows of type AB, in which the mean-wake-closure 
point is on the centre of the forebody. Admittedly it is highly unlikely to observe 
such a flow on an instantaneous picture, nevertheless we have the impression that 
the corresponding mean flow does not exist and that the boundary AB is one of 
discontinuous change. Determinations of the mean-flow fields would be valuable for 
settling this question and for more precisely defining figure 20 in general. 

10. Rounded corners on the axisymmetric rearbody 
The high drag on the rearbody alone could, of course, be drastically reduced, 

without assistance from a frontbody, by simply rounding its edges, or corners, 
sufficiently. A corner radius equal to one-eighth the body diameter is sufficient to 
reduce the drag of the rearbody face to nearly zero in the absence of any frontbody 
provided the Reynolds number is large enough that premature laminar separation 
does not occur (Polhamus 1957). For the rearbody used in the present experiments 
with an edge radius one-eighth the rearbody diameter (r/d2 = 0.125) and roughness 
on the face (sandpaper or a small disk) the drag coefficient was less than 0.01 for 
Reynolds numbers greater than 400000 based on the rearbody diameter. 
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FIGURE 21. Effect of rearbody corner radius on forebody drag: V, sharp corner; 0, round; 
rld,  = 0.125. (a) Axisymmetric cross-section, dJd, = 0.75; (b )  0.25. 

It is of interest to  see what effect a frontbody would have when the rearbody has 
rounded edges. Some results are shown in figure 21 for the axisymmetric model used 
in the previous experiments but with r l d ,  = 0.125. Comparison is made for two cases, 
d J d ,  = 0.25 and 0.75, with and without rounded edges. The Reynolds number based 
on d ,  is 500000. For d J d ,  = 0.75 (figure 21 a )  and small values of g / d ,  (less than 0.2) 
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rounding of the rearbody results in a very large reduction of drag, because the flow 
which has reattached onto the rearbody face can develop suction on the rounded 
edges. For large gap ratios ( g / d ,  > 0.2), on the other hand, the rounding is not helpful. 
In  fact, for intermediate gap ratios, where the square-edged body has very low drag, 
rounding of the edges is apparently detrimental. At these intermediate gaps the 
separation surface is reattaching very near the corner and the corner radius is 
likely to influence the reattachment process and the rearbody face pressure. For 
d , / d ,  = 0.25 (figure 21 b)  rounding has a beneficial effect at all gaps, since reattach- 
ment is always on the rearbody face radially inboard of the corner and the flow is 
attached around the corner. 

As the gap becomes large the rearbody becomes independent of the frontbody and 
in this situation rounding will be beneficial for all frontbodies. This can be seen in 
figure 21 (b) for g / d ,  greater than 1.0, where the drag coefficient begins to decrease. 
The results for the larger frontbody given in figure 21 (a) ,  however, do not extend 
to values of g / d ,  great enough to show the limiting behaviour. The asymptotic values 
of C,  for the results in figure 21 are: for d J d ,  = 0.25, 

C,+0.72+ 1.15(a), = 0.79, square corner, 

CD+0+1.15(a)2 = 0.07, rounded corner; 

and for d l / d 2  = 0.75, 

C,+0.72+ 1.15(f), = 1.37, square corner, 

C,+O+ 1.15(f)2 = 0.65, rounded corner. 

A most interesting result of the rounding experiment is that for some gap ratios 
square edges are better than rounded ones. The reasons for this behaviour are not 
completely clear and a closer investigation of the reattaching flow for these conditions 
needs to be made. 

11. Square cross-section 
Many of the measurements made on the axisymmetric system were repeated for 

a system with square cross-section, i.e. a box with a square plate in front of it. The 
question naturally arises whether the same large reductions of drag can be realized 
as in the axisymmetric case. One might expect the situation to be less favourable since 
the separation surface leaving the front plate will not retain a square cross-section 
and so will not reattach smoothly everywhere onto the leading edges of the rearbody. 
A similar situation would exist in many practical applications. The following figures 
show the main results. 

The variation of C, with g / d ,  is shown for two values of d, /d ,  namely 0.25 and 
0.75 (medium-drag and low-drag geometries respectively), in figure 22 along with the 
corresponding axisymmetric results. For the square configurations, d,  and d,  refer 
to lengths of the front-plate and rearbody sides respectively. The trends exhibited 
in figure 22 are roughly similar to those for the circular cross-section, although there 
are some important differences. For the low-drag frontbody (d , /d ,  = 0.75) the 
minimum value of C,, is considerably higher than for the circular section, about 0.07 
compared to 0.01, although it still represents a full order-of-magnitude decrease from 
the drag of the box alone, for which C,, = 0.75. In the axisymmetric case the 
separated flow conforms to the axisymmetric rearbody, but here there is a mismatch 
between the cross-sectional shape of the separation surface and the square section 
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FIQURE 22. Effect of cross-section shape (sharp rearbody corner) on forebody drag : 0, axisymmetric, 
d J d ,  = 0.25; V, axisymmetric, 0.75; 0,  square, 0.25; V, square, 0.75. 

FIGURE 23. Square-cross-section rearbody face pressure coefficient isolines. (a) d J d ,  = 0.75, 
gld, = 0.375, C,, = 0.07; ( b )  d J d ,  = 0.5, g/d,  = 0.5, C,, = 0.22. 

of the rearbody onto which it is reattaching (a result observed in flow-visualization 
experiments but not adequately photographed) and this has a large effect on the 
minimum drag possible. For the medium-drag frontbody (dJd, = 0.25) on the other 
hand, figure 22 shows rather little (percentage) difference between the two cases. Here 
the separation from the axisymmetric frontbody does not remain axisymmetric but 
forms an oscillating wake (see figure 7 a )  that does not smoothly reattach to the 
rearbody. Consequently the fact that the separation from the square frontbody does 
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not remain square is not so important since there is a mismatch even for the 
axisymmetric case. 

The significance of the mismatch of the separation surface with the square 
cross-section rearbody is more clearly seen in figure 23. Here pressure contours on 
one quadrant of the rearbody face are presented for a low-drag and a medium-drag 
optimum geometry (figures 23a and 6 ,  respectively). Although most of the face of 
the low-drag geometry experiences pressures much less than free-stream static 
(Cp = - l . O ) ,  the corner is exposed to pressure near stagnation (Cpmax = 0.75). In  
comparison, the corresponding axisymmetric rearbody face (figure 8 c ,  g /d ,  = 0.375) 
does not have any areas on which the pressure coefficient exceeds even -0.25. In 
contrast, for the medium-drag geometries there is much less difference between the 
pressure distributions for the square cross-section (figure 23 b) and the corresponding 
axisymmetric one (figure 8a, g/d ,  = 0.75). Failure of the separation surface to 
conform to the square rearbody is obviously of greater importance for low-drag 
geometries than for other configurations. 

12. Hemispherical frontbody 
There are many possible frontbodies besides thin disks; as a simple example that 

perhaps best contrasts with the disks we chose a hemisphere having the same 
diameter as the rearbody. With a hemispherical frontbody, at small gaps the forebody 
drag should be quite low since the situation is essentially that of a circular cylinder 
with a hemispherical nose. When the gap is larger the flow will be more like that over 
an axisymmetric cutout in a circular cylinder and the forebody system will experience 
the additional drag force due to this cutout. Results from a brief investigation of drag 
and pressure variations with changing gap for a hemisphere frontbody follow. 

The drag coefficients for a hemispherical frontbody with dJd,  = 1 .O are presented 
in figure 24; the coefficients here are uncorrected for blockage and skin friction. The 
continuous curve in figure 24 is for the disk dJd,  = 0.75 while the dashed lines are 
coefficients predicted from (9) and will be discussed shortly. One is immediately struck 
by the negative values of C,, for zero and small gap ratios, C,, being -0.016 at 
zero gap. This negative drag is the consequence of blockage and should be corrected, 
using the results discussed in the Appendix of this paper. The net correction, 
ACD = 0.02 f 0.005, indicates that the free-field drag coefficients are positive, though 
still extremely low. 

For zero gap the body is a simple circular cylinder with a hemispherical nose. 
Corrected, the present results indicate that the forebody drag coefficient of this 
configuration is of the order of C,, = 0.005. This result is somewhat lower than the 
few other values available in the literature. Hoerner (1965) integrated the (few) 
pressure measurements of Rouse & McNown (1948) and obtained C,  = 0.01 for a 
hemispherical forebody. Norris & McGhee (1966) inferred C,  = 0.009 by subtracting 
measured values of base drag and calculated values of skin-friction drag from the total 
drag measured on a circular cylinder with a hemisphere nose. A numerical calculation 
of the boundary-layer development on a hemisphe-ylinder (K. Kaups 1982, 
private communication) indicates that the skin-friction drag coefficient on the 
hemispherical nose is approximately 0.004, which is consistent with the present 
results. Differences in experimental details and the difficulty in measuring small forces 
on a forebody make it difficult to assign an absolute value to C,  for a hemispherical 
nose in a free stream. The value of C,  is, however, certainly less than 0.01 and perhaps 
as low as 0.004. 
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FIGURE 24. Measured drag coefficient for a hemispherical frontbody: 0, hemisphere; -, disk 
for comparison; ---, estimates of the forebody drag with a hemispherical frontbody baaed on (9). 
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FIQURE 25. Rearbody-face pressure distributions with a hemispherical frontbody. 

As the gap is increased from zero, figure 24 shows that the drag coefficient increases, 
rather slowly. The curves for the hemisphere and disk configurations cross near 
gld,  = 0.25 and beyond that value, until gld,  reaches 1.5, the forebody system with 
disk has less drag than the one with the hemisphere. Over portions of this gap range 
the disk configurations with dJd, = 0.625, 0.688, and 0.813 also have lower values 
of C ,  than the hemisphere case (see figure 5). An interesting feature of figure 24 is 
the discontinuity in the hemisphere drag-curve slope at g ld ,  = 0.5. Several of the very 
low-drag disk configurations, including the one shown here, also display an abrupt 
change in C ,  as the spacing is increased above a ratio of 0.5. At asymptotically large 
gaps the isolated hemisphere, which has a free-field drag coefficient of about 0.42 
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(Hoerner 1965), should be approximately equivalent to an isolated disk with 
d J d ,  = 0.6. From these force measurements then we do find the expected low 
forebody drag for the hemisphere configuration at small gaps. However, over a fairly 
wide range of larger values of gld,  the drag with hemispherical nose is larger than 
that which is possible with some disks. 

The rearbody-face pressures for the hemispherical frontbody appear in figure 25. 
A useful comparison to these distributions are those in figure 8(c), for the disk 
d J d ,  = 0.75. Qualitatively the distributions are similar but the levels of pressure are 
not. For example, at g/d2 = 0.5 the minimum value of C, with the hemisphere is about 
-0.6 while with the disk the minimum value is approximately -0.9. Again a t  
g/d ,  = 1.0, the minimum value of C, is about 0 for the hemisphere and -0.6 for the 
disk. 

Returning to figure 24, two computed lines also appear in this plot. These lines 
are based on (9) which estimates the drag due to an axisymmetric cutout in a 
constant-diameter circular cylinder. The forebody drag is the sum of this cavity drag 
plus the friction drag on the upstream-facing surface of the frontbody. If we assume 
there is no change in the friction drag of the forward hemisphere face as it moves 
from zero to non-zero values of gap then the forebody drag coefficient is given by 
(9) plus the zero-gap value of C, which here is -0.016 uncorrected. That is 

89 
4 

C D  = C, --0.016. 

Shear-stress measurements for the hemispherical frontbody were not obtained in this 
experiment and so the value of C, here is not precisely known. Since the shear layer 
in this case haa negligible streamwise curvature i t  should be more like a plane mixing 
layer than are the shear layers downstream of disk frontbodies, so an appropriate 
value for C, might be close to that obtained in a plane mixing layer. Two values of 
C, have been chosen for this estimate, 0.012 inferred from the data of Liepmann & 
Laufer (1947) and 0.016 from Wygnanski & Fiedler (1970). With these two values 
for C,, the dashed lines in figure 24 are obtained. The two estimates of C,  bracket 
the measured values over the range from zero gap to gld ,  = 0.5, at which point the 
measured drag curve changes slope. As previously noted, the curve for the disk- 
forebody measurements also changes slope at this gap ratio, which is close to the 
value, 0.6, shown in table 2 as the beginning of the medium-drag range. In  
measurements on a similar configuration but with ellipsoidal nose, Gharib noted a 
similar change of behaviour, which he called the beginning of the ‘wake mode’, at 
g/d  = 0.65. 

This paper is based on work for the Ph.D. thesis by one of us (Koenig 1978). Some 
early results were presented at the 1976 General Motors Symposium on Aerodynamic 
Drag Mechanisms (Roshko & Koenig 1978). The work was initiated with assistance 
from a Ford-Exxon Energy Research Grant and continued with support from 
National Science Foundation Grants ENG 75-03694 and ENG 77-23541. In  addition, 
we are grateful for assistance in various forms from F. H. Clauser, D. E. Coles, 
P. E. Dimotakis, T. Liepmann and G. Lundgren. 

Appendix. Corrections for blockage and extraneous skin friction 
The effect of wind-tunnel wall constraint on forebody drag is to decrease the 

measured drag below the free-stream value. The increased velocity due to the wall 
constraint lowers the pressure on the forebody, whose surfaces are upstream facing. 
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-a a model 
l-a a tunnel 

ACD, = - where a = 

is independent of the forebody shape (Morel 1979; Koenig 1978). This result can be 
obtained from the well-known calculation of Prandtl & Tietjens (1934) which shows 
that the downstream force in potential flow over a half body in a tunnel is 

a c =- + O  for a+O, 
Dm (1  - a ) 2  

when the force includes the base pressure Cpb in a slit across the body at downstream 
infinity, i.e. 

‘Dm = c ~ f - c p b +  

Now 

From (A 2) and (A 3) 

For the wind tunnel and model on which our drag measurements were obtained, 
a = 0.030. Thus the measured values of C, should be increased by 0.031 to correct 
for wall constraint. The correction should be valid for the low-drag flows, for which 
there is no large separation that would change the effective (displacement) area of 
the rearbody. But it is only for the low values of drag that the correction is important. 
In  fact, it  is clear that the small values are of the same magnitude as the correction. 

To estimate the skin-friction force on the metric segment of the rearbody is more 
problematic. Again for low-drag cases, the shear stress in the free shear layer 
impinging on the shoulder is of order T = 0.OlpUS. Although the reattached 
boundary layer might initially have a shear stress as high as this the stabilizing 
influence of the wall and the adverse pressure gradient should rapidly lower it, 
bringing it down to typical flat-plate values 7, - 0.0015pu2, or less. For want of 
information about this interesting problem, we use the latter value, C, = 0.003, for 
an average value of skin-friction coefficient over the metric segment, which is 5 in. 
(12.9 cm) long compared to its 8 in. (20.3 cm) diameter. It gives a drag increase 
AC = 0.01. Thus the net correction to be added to the measured C,, as defined in 
( 1 ) 9  ACD = 0.031 -0.01 = 0.02+0.005. Adding to this the uncertainty of 0.004 in 
the drag measurement itself (see $2, Experimental details), there is clearly considerable 
uncertainty as to the true values of the low-drag coefficients. It is for this reason that 
we deemed it important to present the data without the corrections, except in figure 9 
and in figure 14 where comparisons are made with a model calculation. 

In measurements of reattachment of a similar free shear layer downstream of a 
step, Bradshaw & Wong (1972) found that the wall friction rapidly builds up to a 
value of 7, = O.O03(+pu2,) then slowly decays. Thus C, = 0.003 appears to be ‘a 
reasonable value for the average skin-friction coefficient. 

While not so important, it is of interest to consider the blockage effects on a 
separated, high-drag configuration. A good example is the rearbody without the 
frontbody. As stated earlier, the value of the pressure drag on the front face, without 
correction for blockage or extraneous skin friction, is 0.72. The side surfaces of the 
metric segment are now in separated, reverse flow, so the contribution of (reverse) 
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friction force should be negligible. Applying the blockage correction of (A l ) ,  i.e. 
ACD = 0.031, then gives, for the corrected value, C,, = 0.75. 

Another approach to the correction problem for this bluff body, using the 
well-known method of Maskell (1965) and making use of data for disks, was suggested 
to us by P. Bearman. For a disk (Morel 1980) the corrected, free-stream values of 
drag, base pressure and front-face average pressure respectively are 

c,, = 1.12, CPbc = -0.36, Cpfc = 0.76. 

With blockage, Maskell’s method predicts 

For a = 0.030, this implies C, = 1.257, Cpb = -0.526 and cpF = 0.73. Thus the 
effect of blockage is to reduce the front-face force in the ratio 0.73/0.76. Applying 
this to the face of the rearbody in our experiment gives for the corrected value 
C,, = (0.76/0.73)0.72 = 0.75, the same value as determined by (A 4). 

For the configuration with hemispherical frontbody, the values of drag were again 
very low. The influence of blockage on this body should be the same as for the low-drag 
disks. The friction force requires knowledge of Cfon the metric segment. Surprisingly 
the boundary-layer development just past the shoulder of a hemispherical forebody 
seems to be a subject missing in the literature. For estimation purposes we again take 
C, = 0.003 so that the net correction to the hemisphere a t  zero and small gaps is the 
same as for the low-drag disks. 
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